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The problem of heating of a flanged joint is treated in a general manner, allowing for the thermal stresses. 
An approximate method of solution is proposed. 

If  a flange is considered as a plate with one dimension substantially less than the other two, the thermal stresses at 
points sufficiently far from the edges may be determined from the formula for an infinite plate [1] 
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It is not  hard to see that given a linear variation with t ime of the temperature at all points of the plate (boundary 
condition of the second kind) and constant thermal conductivity, the temperature distribution through the plate after a 
certain t ime will be described by a quadratic parabola of constant shape, and the thermal stresses will not vary with 
time. 

The temperature field in the plate may also be described approximately for other boundary conditions [2]. 

The duration of  the first phase, when the temperatures at some section through the thickness of  the plate are prac-  
t ically indistinguishable from" their initial values, may  be shown by calculation to be comparatively short and measur- 
able in minutes. This phase may therefore be excluded from consideration, especially since the temperature differences 
and the stresses do not attain their maximum values in this period. Then 

t = f (~) + to + ~ (x - Xm~n)~/2. (1) 

If we take B, E, v to be independent of temperature, the stresses in the plate for a quadratic distribution of temper-  
ature through the thickness will be 

1--'~ 2 

for any value of Xmi n. 

The heat flux per unit surface area of the flange in unit t ime is 

at ~-~ ~, at ~ = - ~  = 2 k R  

and is also independent of Xmi n. 

Thus, equal heating rates correspond to identical stresses in both the cases examined and in all intermediate cases, 
and from the point of view of  allowable thermal stresses in the plate, the heating rate does not depend on whether it is 

heated from one or from both sides. 

The examined model of  thermal stresses in an infinite plate gives a more or less accurate indication of the longitu- 
d ina l  (axial) stresses in the flange, but it is completely unsuitable for evaluating the stresses on the surfaces paralle1 to 
the joint, and especially at the joint itself, where there can be no tensile stresses. 

The compressive stresses in the joint are counterbalanced for each half  of the flange by the force exerted by the 
clamp (pin or bolt), and, since the d a m p  has a prestress, compressive stresses are set up over the whole surface of  con- 
tact of the two halves of  the flange if the temperature distribution is uniform. 

Because of  the great stiffness of the flange in bending, we may clearly neglect its deflection, and assume, as is 
usual in flange calculations, that the stresses in the joint vary linearly. When there is a temperature nonuniformity in 
the flange, we have a combination of  the stresses exerted by the clamp and thermal stresses. 
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For symmetr ica l  heating 

] E [__kx ~ ~__kR" + c x + %  , 
( ~ = 1 - - ~  L 2 ' 6 

(2) 

where o0 and c are independent of  the coordinates. 

Equation (2) retains its form, by and large, for the stressed part of the surface of the joint, even when the stresses 
at some section fail  to zero in connection with the increase in temperature nonuniformity. 

To form the equilibrium eq~aation of the flange at an arbitrary t ime,  it  is necessary to integrate the stresses and the 

corresponding moments,  the l imits  of  integration varying in accordance with the variat ion of the boundary of the 
stressed zone of the joint .  

In pract ice ,  the a t tempt  to solve the problem in this way encounters unforeseen ma themat i ca l  difficulties. The so- 
lution may  be obtained simply enough i f  the region of integration is constant. This condition may be considered satis-  
fied for flanges with a recess in the joint. Beyond the l imits  of the recess there can be no stresses only when the nonuni- 
formity of the temperature field is ext remely  great. 

The assumption that the region of integration coincides with the unrecessed part of the joint may  then lead only to 
some overest imate  of the ca lcula ted  values of the stresses in the flange and to some underestimate of them in the bolt,  
compared to the ac tual  values. 

The conditions of  static equilibrium for a section of  flange equal in length to the step may  be written as 
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Here no account has been taken of  the moment  act ing on the flange from the wall  side, this being cus tomary in ca lcu-  
lations of  flagged connections [3]. The load on the connection due to excess pressure in the cyl inder  has also been ne-  
g lec ted  in formulating (8) and (4). This pressure, which increases somewhat the stresses in the bolt and at  the outside 
edge of  the joint and relieves the most highly stressed inside edge, does not play a significant part during heating. 

To determine the temperature field on the flange, required for evaluat ion of the stresses in it, we equate the heat  
flux through unit surface of the flange in unit t ime from both sides 

dq=~ Ot ~= _ ~  Ot Ix= 
Ox Ox -R 

and the rate of increase of heat  content of the corresponding part of the flange 

R 

0 tdx ) 
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(5) 

Expression (1), which gives  the temperature field for a plate and does not take into account the bolt  holes in the flanges, 

which impede the propagation of heat,  may,  however, be used without risk of great error under conditions of symmetr i -  
cal  heat ing when the heat  flux in the dri l led region is small.  In this case, when e~,  k ,  and I are constant 

R 

0 

The heat  flux from the walls, which has prac t ica l ly  no effect on the temperature of the inside edge of the joint,  
may  increase the mean integral  temperature of the flange and bolt and lower the stresses somewhat. 

Similarly,  we may  determine the temperature conditions of the bolt for the ease when the only heat  flowing into it 
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comes from the f lange.  Neglect ing the very small  temperature  nonuniformity in the bolt,  we have 

a ( / f - - t b ) =  dybC~b dtb �9 (6) 
4 d r  

The stresses in the bolt  are determined by its prestress o s and the temperature  difference between it and the flange; 
the character is t ic  temperature  to be used for high flanges, for which the hypothesis of plane sections holds, is the mean 
integral  temperature  

Under the above assumptions 

R 

"t = 2t?,1 ; tdx. 
--R 

i = to 4 f + 
6 

ab = aa q- k c ~ b E b  0-- tb) .  
(7) 

The system of equations (7) contains eight unknown functions: t, a ,  t b, c, f,  o b, k, a0, the first two of which depend 
on the coordinate and t ime,  and the remainder  only on t ime.  To obtain a unique solution for a known in i t ia l  condition 
of the system, we must impose an addit ional  restraint. 

The rate of heat ing may  be l imi ted  by stretching of the bolt,  buckling of the joint, or longitudinal  stresses on the in-  

side of the flange. It is therefore convenient to assume as the addit ional  condition that the most dangerous of these 
quantit ies is main ta ined  at its maximum al lowable value,  which in the simplest case is the constant leve l  o a. With this 

condition we can find the remaining stresses, and, i f  necessary, replace  the additional condition. One can also visual ize 
the case when the ini t ia l  heating is determined by one addit ional  condition, and then another parameter  becomes the 
determining one. Then the conditions at the end of the first heat ing period will  be the in i t ia l  values for the second. 

In calculat ions carried out for two turbines, the l imi ta t ion  proved to be the stresses in the joint .  Then the addi t ion-  
ial condition has the form 

�9 ~ E  [ kR ~ +%+cR) . 
= = ] - - ' ,  [ 3 

(8) 

The system of equations (1)-(8) can be solved in closed form for paramet r ic  l inear iza t ion  of the equations (al l  phys- 
i ca l  properties of the mater ia l s  and the heat  transfer coeff icient  from flange to bolt  are assumed constant) and with the 
other assumptions made  above. 

Introducing the notat ion 

4a/Cb Yb d = q; k / cy  = a; an (1  J ~)/~E = ax, 

we can write equation (6) as 

t' b q- qt b = qtf .  

The solution of this equation has the form 

t b = exp (--qz) [2qtf exp(q~) dr-I- C~]. 
o 

In the case of symmetr ica l  heat ing of the flange, the  expression for tp, following substitution of t from (1), at the 

level  of the bolt  may  be written thus: 

t b = q e x p ( - q r ) ; e x p ( q z ) [ ( r ) d r + t o + C , e x p ( - q r ) +  
o 

+ exp (--q r f~  q i kexp (q~) dr. 
o 

(9) 
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From (1) and (5) we find 

(~) = a ~ kd "~ - -  to 
i . I  
0 

and, substituting fO')  into (9), we finally obtain 

kR ~ 

6 

( t b - - [ = C ~ e x p ( - - q ~ ) - -  a + q  6 

• e x p ( - - q ~ )  I/r162 ar 
6 

(lO) 

where K = S kd': ,  K ' = k .  
o 

Substituting this value of tp - t into (7), and equating the Op from (3) and (7), we obtain the integral equation 

"c 

a~ + ask + a3c = a5 exp ( - -q~)  .f kexp(q,c)d':. + a4 exp ( - -  q ~), (11) 
0 

where k and c are unknown functions of time 

S 1- -v  
a~ : 2r R ~ r (x+ - -  x_)  + -h- % ~----{- ' 

2 R3 R 2 1 
~.,.=-~ - - T ( x + - - L )  + - ( ( ~ - ~ - ) ,  

1 
a3 : - -  2R ~ + R (x+ - -  x _ ) -  9 (x~_ --  x2_), 

S 
a4 "-~ ~ (1 - -  v) C1, 

a a = - - ( 1 - - ~ ) - -  h- a -l- q -~- - -  q k~ . 

Equating the left sides of (8) and (4), having first eliminated o, we use (2) to obtain a second linear equation 

b~ k + b2 = b3 c, (12) 

where 

bx = 2 R3Xb R2Xb ( x + - - x _ ) +  Xb 
2 --6 - - ' ( x 3 + - x 3 - ) +  

1 R 2 + -~ ( ~  - x~_) + ~ ~x~ - ~_), 

0"1 
b~ = 2~1Rx b - ~ l x  b Ix, - L )  + -~  ( ~ -  ~L), 

_~ R ( x ~ _ -  x~) - I x ~ b 3 = R 3 +  - f f  -~- ( + " x ~ )  + 2R 2 x b - -  

Xb (x~ -- xL). - - R x  b (x+ - -  x ' )  + - 7  

Solving (11) and (12) simultaneously, we obtain an integral equation for k, and, putting 

al + a.~bJb3 = B, a5 -- H,., ar --- A, 
a~ + asbl/ba a2 + a3bdb3 az + a3bdba 
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.i k exp (q ~) d ~ = -x, x ' =  k exp (q z), 
0 

we obtain the differential equation 

~ ' -=Hx  = A - -  B e x p  (q~), 

the solution of which is 

X - - -  ~ - -  

A B 

/4 + g2-_q - -  exp (q'0 + C=exp (Hx) .  

Hence 

C --- 

k = C3 exp [(H - -  q) ~] �9 Bq 
q- -H 

b2 bl Bq 
b-~- + ~ Csexp [(H--q),~1 - - .  

q--H 
b l  _ _  ~ b~ 

When T = 0 

tb = to, tb -- t = --  kR~/6 ,. 

C ,= a + q - - ~  q H q H 6 ' 

a~ + a2 C3 q--H +as ~ + b--~ C3 q--H b~ -- 

=q-. +-/ . 

Equations (lOa) and ( l la)  determine C 1 and C s. After substitution of C l into ( l la) ,  we obtain 

(13) 

�9 (14) 
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Some results of heating calculations for the flanged 
connection of a cylindrical turbine: 1) t x = R; 2) t; 

3 ) % ;  4) t x =0; 5) th; 6) q. 

where 

al + a~ Ca q--H + 

( b~ b~ 

Bq bl i = 0 ,  
q - - H  b3 ] 

0 S R ~ 
a2 = a ~ +  --h-- ( 1  - -  ~ )  - -  �9 
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Some results of heating calculations for the flanged 
connection of one of the turbines are given in the figure. 

The calculated longitudinal compressive stresses on 
the inside face of the flange during the whole heating per- 
iod prove to be lower than the stresses in the joint. The ac-  

tual stresses will be even lower due to weakening of the flange by the bolt holes. It should be noted that the above cal ~ 
culation gives the maximum allowable heating rate of the flange at each moment of time, which may  be unattainable 
in practice. 

However, one can check that the stresses produced are allowable by adding the additional condition corresponding 
to the actual heating regime to the system of equations (1)-(7). 
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NOTATION 

Character i s t ics  of  the f lange:  E - modulus  of e las t ic i ty  of ma te r i a l ;  B - coe f f i c i en t  of l inear  expansion of  m a t e r i a l  

cf - spec i f ic  heat ;  7 - spec i f ic  weight  of ma te r i a l ;  X - . t h e r m a l  conduct ivi ty ;  f ( r )  and R - functions of t ime;  Xmi n - 

coord ina te  of  m i n i m u m  of t empera tu re  curve  (for syrp/i-netrical hea t ing  it  vanishes), equal  to (-R) if  the place rece ives  

h e a t  on the side where x is posi t ive and is insulate;t  ~on the opposite  side (uni la tera l  heating);  k c - a coef f ic ien t ,  taking 

into account  compl i ance ;  u - Poisson's ratio; R -- charac te r i s t i c  dimension;  x+ ,  x - c o o r d i n a t e s  of  edges of recess; 

tx = R and t x = 0 - t empera tures  at inside and in m i d d l e  of  flange; to - in i t ia l  t empera tu re  of f lange;  a - stress in f lange;  

a - reduced coe f f i c i en t  of hea t  transfer from f lange to bolt ,  taking account  of hea t  flux through contac t  be tween  them;  

q - hea t  flux to f lange.  Character is t ics  of  the bolt :  Ep - modulus  of  e las t ic i ty  of mate r ia l ;  B b - coe f f i c i en t  of  l inear  

expansion of  ma te r i a l ;  c b - spec i f ic  heat ;  7b - spec i f ic  weight  of  ma te r i a l ;  h - p i tch  of  bolt;  S - cross-sect ional  area; 

o b - stress in bolt;  t b - t empera tu re  of  mate r ia l ;  d - d i ame te r  of  bolt;  x b - coord ina te  of bol t  axis. 
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