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The problem of heating of a flanged joint is treated in a general manner, allowing for the thermal stresses.
An approximate method of solution is proposed,

If a flange is considered as a plate with one dimension substantially less than the other two, the thermal stresses at
points sufficiently far from the edges may be determined from the formula for an infinite plate [1]

R
pE 3B Ex
=— txdx.
o - + l—v)y Xt —— 2R3(1——v) xdx

It is not hard to see that given a linear variation with time of the temperature at all points of the plate (boundary
condition of the second kind) and constant thermal conductivity, the temperature distribution through the plate after a
certain time will be described by a quadratic parabola of constant shape, and the thermal stresses will not vary with
time.

The temperature field in the plate may also be described approximately for other boundary conditions [2].

The duration of the first phase, when the temperatures at some section through the thickness of the plate are prac-
tically indistinguishable from their initial values, may be shown by calculation to be comparatively short and measur-
able in minutes. This phase may therefore be excluded from consideration, especially since the temperature differences
and the stresses do not attain their maximum values in this period. Then
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If we take B, E, v to be independent of temperature, the stresses in the plate for a quadratic distribution of temper-
ature through the thickness will be
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for any value of xpyjp.

The heat flux per unit surface area of the flange in unit time is
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and is also independent of xpip.

Thus, equal heating rates correspond to identical stresses in both the cases examined and in all intermediate cases,
and from the point of view of allowable thermal stresses in the plate, the heating rate does not depend on whether it is
heated from one or from both sides.

The examined model of thermal stresses in an infinite plate gives a more or less accurate indication of the longitu-
dinal (axial) stresses in the flange, but it is completely unsuitable for evaluating the stresses on the surfaces parallel to
the joint, and especially at the joint itself, where there can be no tensile stresses,

The compressive stresses in the joint are counterbalanced for each half of the flange by the force exerted by the
clamp (pin or bolt), and, since the clamp has a prestress, compressive stresses are set up over the whole surface of con-
tact of the two halves of the flange if the temperature distribution is uniform,

Because of the great stiffness of the flange in bending, we may clearly neglect its deflection, and assume, as is
usual in flange calculations, that the stresses in the joint vary linearly, When there is a temperature nonuniformity in
the flange, we have a combination of the stresses exerted by the clamp and thermal stresses,
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For symmetrical heating
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where o and ¢ are independent of the coordinates,

Equation (2) retains its form, by and large, for the stressed part of the surface of the joint, even when the stresses
at some section fall to zero in connection with the increase in temperature nonuniformity.

To form the equilibrium equation of the flange at an arbitrary time, it is necessary to integrate the stresses and the
corresponding moments, the limits of integration varying in accordance with the variation of the boundary of the
stressed zone of the joint.

In practice, the attempt to solve the problem in this way encounters unforeseen mathematical difficulties, The so-
lution may be obtained simply enough if the region of integration is constant. This condition may be considered satis-
fied for flanges with a recess in the joint. Beyond the limits of the recess there can be no stresses only when the nonuni-
formity of the temperature field is extremely great.

The assumption that the region of integration coincides with the unrecessed part of the joint may then lead only to
some overestimate of the calculated values of the stresses in the flange and to some underestimate of them in the bolit,
compared to the actual values,

The conditions of static equilibrium for a section of flange equal in length to the step may be written as
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Here no account has been taken of the moment acting on the flange from the wall side, this being customary in calcu-
lations of flanged connections [3]. The load on the connection due to excess pressure in the cylinder has also been ne-
glected in formulating (3) and (4). This pressure, which increases somewhat the stresses in the bolt and at the outside
edge of the joint and relieves the most highly stressed inside edge, does not play a significant part during heating.

To determine the temperature field on the flange, required for evaluation of the stresses in it, we equate the heat
flux through unit surface of the flange in unit time from both sides
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and the rate of increase of heat content of the corresponding part of the flange
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Expression (1), which gives the temperature field for a plate and does not take into account the bolt holes in the flanges,

which impede the propagation of heat, may, however, be used without risk of great error under conditions of symmetri- '
cal heating when the heat flux in the drilled region is small. In this case, when cg, X, andy are constant
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The heat flux from the walls, which has practically no effect on the temperature of the inside edge of the joint,
may increase the mean integral temperature of the flange and bolt and lower the stresses somewhat,

Similarly, we may determine the temperature conditions of the bolt for the case when the only heat flowing into it
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comes from the flange. Neglecting the very small temperature nonuniformity in the bolt, we have
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The stresses in the bolt are determined by its prestress og and the temperature difference between it and the flange;
the characteristic temperature to be used for high flanges, for which the hypothesis of plane sections holds, is the mean
integral temperature '
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The system of equations (7) contains eight unknown functions: t, o, t, c, f, O» k, oy, the first two of which depend
on the coordinate and time, and the remainder only on time. To obtain a unique solution for a known initial condition
of the system, we must impose an additional restraint.

The rate of heating may be limited by stretching of the bolt, buckling of the joint, or longitudinal stresses on the in-
side of the flange. It is therefore convenient to assume as the additional condition that the most dangerous of these
quantities is maintained at its maximum allowable value, which in the simplest case is the constant level O, With this
condition we can find the remaining stresses, and, if necessary, replace the additicnal condition. One can also visualize
the case when the initial heating is determined by one additional condition, and then another parameter becomes the
determining one, Then the conditjons at the end of the first heating period will be the initial values for the second.

In calculations carried out for two turbines, the limitation proved to be the stresses in the joint. Then the addition-
;al condition has the form
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The system of equations (1)~(8) can be solved in closed form for parametric linearization of the equations (all phys-
ical properties of the materials and the heat transfer coefficient from flange to bolt are assumed constant) and with the
other assumptions made above,

Introducing the notation
dajey ypd=q; Mey=ga; 0,(1 —v)BE =g,
we can write equation (8) as
by gty = gls.
The solution of this equation has the form

ty=exp (—q7) [[glrexp(gr) d= +Ci].

In the case of symmetrical heating of the flange, the expression for tp following substitution of t from (1), at the
level of the bolt may be written thus:
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From (1) and (5) we find
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and, substituting F(r) into (9), we finally obtain
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§

Substituting this value of t_ — t into (7), and equating the % from (3) and (7), we obtain the integral equation
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Equating the left sides of (3) and (4), having first eliminated g, we use (2) to obtain a second linear equation
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Solving (11) and (12) simultaneously, we obtain an integral equation for k, and, purtting
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we obtain the differential equation

the solution of which is

Hence

When 7t =0
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Equations (10a) and (11a) determine Cy and Cs. After substitution of C; into (11a), we obtain
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Some results of heating calculations for the flanged
connection of a cylindrical turbine: 1) t, - p; 2) §;
3) oh: 4) tx =0 5) th; 6) q.
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Some results of heating calculations for the flanged
connection of one of the turbines are given in the figure,

The calculated longitudinal compressive stresses on
the inside face of the flange during the whole heating per-
iod prove to be lower than the stresses in the joint., The ac-

tual stresses will be even lower due to weakening of the flange by the bolt holes, It should be noted that the above cai-
culation gives the maximum allowable heating rate of the flange at each moment of time, which may be unattainable

in practice,

However, one can check that the stresses produced are allowable by adding the additional condition corresponding
to the actual heating regime to the system of equations (1)-(7).
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NOTATION

Characteristics of the flange: E — modulus of elasticity of material; B — coefficient of linear expansion of material,
cf — specific heat; y — specific weight of material; A —<hermal conductivity; f(r) and R — functions of time; xpin ~
coordinate of minimum of temperature curve (for syminetrical heating it vanishes), equal to (—R) if the plate receives
heat on the side where x is positive and is insulated on the opposite side (unilateral heating); k, ~ a coefficient, taking
into account compliance; v — Poisson's ratio; R — characteristic dimensiory x,, X_ = coordinates of edges of recess;
tx =R and ty - o — temperatures at inside and in middle of flange; to — initial temperature of flange; o — stress in flange;
o —~reduced coefficient of heat transfer from flange to bolt, taking account of heat flux through contact between them;
q — heat flux to flange. Characteristics of the bolt: Ep ~ modulus of elasticity of material; B, — coefficient of linear
expansion of material; ¢, — specific heat; Yy — specific weight of material; h — pitch of bolt; § ~ cross-sectional area;
Op — stress in boly; t, — temperature of material; d — diameter of boly; X}, — coordinate of bolt axis.
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